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We investigate the stability of gravity currents, in a rotating system, that are infinitely 
long and uniform in the direction of flow and for which the current depth vanishes on 
both sides of the flow. Thus, owing to the role of the Earth’s rotation in restraining 
horizontal motions, the currents are bounded on both sides by free streamlines, or 
sharp density fronts. A model is used in which only one layer of fluid is dynamically 
important, with a second layer being infinitely deep and passive. The analysis includes 
the influence of vanishing layer depth and large inertial effects near the edges of the 
current, and shows that such currents are always unstable to linearized perturbations 
(except possibly in very special cases), even when there is no extremum (or gradient) 
in the potential vorticity profile. Hence the established Rayleigh condition for in- 
stability in quasi-geostrophic models, where inertial effects are assumed to  be vanish- 
ingly small relative to Coriolis effects, does not apply. The instability does not depend 
upon the vorticity profile but instead relies upon a coupling of the two free streamlines. 
The waves permit the release of both kinetic and potential energy from the mean flow. 
They can have rapid growth rates, the e-folding time for waves on a current with zero 
potential vorticity, for example, being close to one-half of a rotation period. Though 
they are not discussed here, there are other unstable solutions to this same model when 
the potential vorticity varies monotonically across the stream, verifying that flows 
involving a sharp density front are much more likely to be unstable than flows with 
a small ratio of inertial to Coriolis forces. 

Experiments with a current of buoyant fluid at the free surface of a lower layer are 
described, and the observations are compared with the computed mode of maximum 
growth rate for a flow with a uniform potential vorticity. The current is observed to  
be always unstable, but, contrary to the predicted behaviour of the one-layer coupled 
mode, the dominant length scale of growing disturbances is independent of current 
width. On the other hand, the structure of the observed disturbances does vary: when 
the current is sufficiently narrow compared with the Rossby deformation radius (and 
the lower layer is deep) disturbances have the structure predicted by our one-layer 
model. The flow then breaks up into a chain of anticyclonic eddies. When the current 
is wide, unstable waves appear to grow independently on each edge of the current and, 
at large amplitude, form both anticyclonic and cyclonic eddies in the two-layer fluid. 
This behaviour is attributed to another unstable mode. 
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1. Introduction 
There have been many studies of the stability of stratified shear flows in a rotating 

fluid. Apart from Kelvin-Helmholtz instabilities, most studies have concentrated 
upon quasi-geostrophic models, in which inertial forces are small compared with 
Coriolis forces. These studies reveal two fundamental types of instabilities. The first of 
these takes place in a one-layer fluid. The resulting (barotropic) instability is driven by 
the horizontal shear of the basic flow, and requires an extremum in the profile of 
potential vorticity (i.e. absolute vorticity divided by depth). Although potential 
energy may be released by the instability, it is necessary that kinetic energy of the 
mean flow be released. The second t m e  of inatability takes place in a two-layer fluid 
(or, of come,  a continuously stratified one). This instability, usually called baroclinic 
instability (of. Pedlosky 1964), can occur without the release of mean kinetic energy 
but does require the release of mean potential energy that was stored in the density 
field. Again, a necessary condition for instability is that the gradient of potential 
vorticity changes sign somewhere within the fluid. 

Models in which inertial forces are assumed to be much smaller than the Coriolis 
forces are appropriate for large-scale motions in the ocean and atmosphere, but do not 
provide a good description of many smaller-scale motions, such as the instabilities of 
density fronts in the ocean, where inertial forces can be comparable with Coriolis 
forces. By a ' front' we refer to the situation where a density surface intersects an upper 
or a lower boundary (such as the ocean surface or bottom). For this situation the 
conservation of potential vorticity by fluid columns aligned parallel to the axis of 
rotation, along with the vanishing layer depth, suggests that the fluid vorticity near 
the front may be comparable to the background (planetary) vorticity. Motions will 
then be strongly influenced by inertial forces. However, there have been very few 
studies (Orlanski 1968) of instabilities at density fronts because of the complexity of 
including the ageostrophic terms. 

In this paper we want to study the situation in which the same density surface has 
two intersections with the same boundary (i.e. there are two fronts present). Such a 
situation occurs whenever buoyant water forms a narrow current a t  the ocean surface 
(away from coastal boundaries) or when dense water flows in a narrow stream over the 
ocean bottom under the influence of buoyancy forces. One such case is the flow of cold, 
dense Norwegian Sea water through the Denmark Strait and along the sloping bottom 
south of the strait (Worthington 1969; Mann 1969; Smith 1976). Coriolis forces are 
able to inhibit any slumping of the buoyant fluid in the direction perpendicular to the 
direction of flow and, at the same time, the presence of a cross-stream bottom slope 
prevents the current from curving to its right. We show here that the presence of two 
free streamlines, at the intersections of the density interface with the bottom on each 
side of the current, gives rise to  another mechanism for instability. This mechanism 
operates even when only one layer of fluid (the current itself) is present, and instability 
does not depend critically upon the details of the potential vorticity profile. 

Because we are particularly interested in the possibility that a single layer of fluid 
can be unstable, we consider a current flowing beneath a deep second layer which is 
stationary and passive. We show that a long rectilinear current bounded by two free 
streamlines and adjacent to a sloping (or horizontal) boundary is (almost) always un- 
stable. Normal-mode perturbations with finite downstream wavelengths lead to the 
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exponential growth of a combination of meandering and vmicose modes.? This 
combination leads to release of kinetic and potential energy from the original flow. 
For a current with zero potential vorticity, the wavelength with maximum growth 
rate is predicted to be 7.9 times the deformation radius based on the maximum depth 
of the current, and the maximum growth rate gives an e-folding time of 0.57 rotation 
periods. 

For a general vorticity distribution, it is shown that instability will always occur 
for sufficiently long waves whether or not the traditional Rayleigh criterion is satisfied, 
provided only that the undisturbed relative vorticity does not vanish at points where 
the flow velocity is equal to the phase velocity of growing disturbances. This kind of 
instability relies upon a coupling between the two edges of the current. It is therefore 
likely to continue to contribute to the energy release from sufficiently narrow currents 
when there are two layers of finite depth and where baroclinic two-layer instability 
may be important. As a particularly useful example (and one that may give areasonsble 
description of oceanic and laboratory currents - at least up to the single-layer assump- 
tion) we next consider flows with a finite but uniform potential vorticity and describe 
the exact numerical solution of the eigenvalue problem. In this case the radius of 
deformation and the current width are independent length scales. When all lengths 
are non-dimensionahed by the deformation radius we find that the downstream length 
scale of the most rapidly growing disturbance increases, while its growth rate decreases, 
with increasing current width. 

The very unstable nature of a current with two free streamlines is demonstrated by 
laboratory experiments. A narrow current of buoyant fluid was produced at the free 
surface of a deep lower layer by floating a layer of fresh water on top of a salt solution 
between two axisymmetric cylindriaal walls in a rotating system. When the walls were 
withdrawn, gravitational collapse produced a narrow annular flow with approximately 
uniform potential vorticity. Coupled disturbances, with a structure that was very 
similar to that predicted, appeared on the two fronts when the initial half-width of the 
current was less than twice the initial Rossby radius. The flow rapidly developed into 

t It can a h  be shown that in the limit of very laxge downstream length ecalea variations of 
current width will give rise to a purely meandering instability. This meandering mode will grow 
linearly with time (Grifflths 1980). 
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a chain of anticyclonic eddies. The preferred downstream length scale of disturbance 
ww 7.4 f 1.3 times the radius of deformation for the state of geostrophic balance and 
was independent of current width. For narrow currents the observed length scale and 
structure of the instabilities can be explained by the present theory, but the model 
does not explain the instability that is observed when the current is wide. In that case 
a second mode of instability appeared to occur on each independent density front. 
This second mode may well require an active second layer, or else it may be the mani- 
festation of another unstable solution to the equations for a single-layer fluid. This 
other unstable solution occurs on each front independently and will be discussed in 
another paper. 

2. The stability problem 
Governing equations 

We consider the configuration in figure 1, in which a fluid of uniform density pB flows 
beneath an infinite fluid of density p1 < p2, against a uniformly sloping bottom whose 
(constant) gradient in the y-direction is -a. The undisturbed flow is taken to be 
parallel to the x-axis. Assuming no flow in the upper layer, and that a is small enough 
for the hydrostatic assumption to hold, the momentum and continuity equations are 

(2.1) 

v t+uvz+vvU+f(u-  U )  = -g'h,, (2.2) 

(2.3) 

~t + U U ~  + VU, - f v  = - g'h,, 

ht + (uh), + (vh), = 0, 

where (u, v) are the (2, y)-components of velocity, t represents time, f is the Coriolis 
parameter and g' = g(p2 -pl ) /p2 is the reduced gravity. The velocity U ,  given by 

U = g'af-1,  (2.4) 

is the constant x-component of flow induced by the sloping bottom and will often play 
the role of a mean advecting current. Equations (2.1)-(2.3) imply that the potential 
vorticity 

(2.5) 
f + V z - U u  

h 
P =  

is conserved by fluid columns. Hence, if the potential vorticity at any time is uniform 
throughout the flow, we may write 

I 

where H, would be the uniform depth of the fluid when the relative vorticity is zero. 
Let H be a typical depth of the undisturbed current (which, in examples, will often 

be the maximum depth and will occur at y = 0). The flow is then characterized by the 
radius of deformation (g'I7))f-l and the time scale f -l. Because we will be interested 
in downstream (x) variations with some - usually large - length scale A, say, we define 
a dimensionless wavenumber 

6 = 2m(g'H)i/ f A. 
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Convenient non-dimensional variables are then defined by 

} (2.7) 
2 = 2*s-'(g'H)+f-', y = y*(q'H)if-', (u, U )  = (u*, U*) (g'H)f, 
o = e*&'H)*, t = t*s-'f-', h = h*H, 

and, in the case of uniform potential vorticity, H,, = H&'. Here the starred quantities 
are nondimensional. Dropping asterisks, (2.1) and (2.2) become 

(2.8) 

s"vt+U(E%z+l)- u = -(h+*Bva),, (2.9) 

u, + v(u, - 1) = - (h + #u2)z, 

while the continuity equation (2.3) retains its original form. In the special cme of 
flow with uniform potential vorticity, (2.6) becomes 

(2.10) 

The undisturbed flow 
The undisturbed flow is taken as the steady solution of (2.8), (2.9), (2.3) with v = 0. 
Then (2.9) reduces to the geostrophic relation 

(2.11) 

where the bars denote the basic flow whose stability is to be investigated. If the flow 
has a uniform potential vorticity, (2.10) gives a,a an additional constraint the relative 
vorticity 

(2.12) 
- 7i 
u, = 1-- 

As well as the case of general U, we shall consider two special cases in this paper, 
both involving constant potential vorticity P. (The Rayleigh criterion for instability 
would need P, to change sign, so these cases would be stable by this criterion.) One 
configuration is that of an infinitely long current (of dimensional width W) extending 
from y = - L  to y = L, where L =fW(g 'H) i .  The boundary conditions on (2.11), 
(2.12) are then A = 0 at  y = k L, and the solution takes the form 

- 
u =  u-xu, 

X'  

(2.13) 

Thus the flow involves two length scales, L and 2. In the limit of zero potential 
vorticity - the second special configuration - 2 -+ 00, (2.12) yields U, = 1 , and (2.13) 
reduces to 

7i= 1 - 8 y 2 ,  a=  u + y .  (2.14) 

In this case the current width is fixed at L = 4 2  and the flow is described, in dimensional 
terms, by the single length scale H .  

The perturbation equations 
We impose a small perturbation of the form (u', v', h') = (a, 8, A) eib+) on the undis- 
turbed flow (U,O,E).  Then the momentum and continuity equations (2.8), (2.9), (2.3) 
give the following linearized equations for the perturbation amplitudes: 

(U-c)42+(1-Uu)i8 = - A ,  (2.16) 
FLY 117 12 
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ak 
&+k* ( i i -c )O  = -- 

dY’ 
d 

E & - i - ( O E ) + ( U - c ) S  = 0. 
dY 

(2.16) 

(2.17) 

From (2.16) it can be seen that the downstream velocity perturbation is ageostrophic 
at order e2. For currents with a uniform potential vorticity (2.10) gives the additional 
condition that 

(2.18) 

In  3 we present a solution of (2.16), (2.17) and (2.18) for a very simple but illu- 
minating problem - that with zero potential vorticity. In  4 the system (2.16)-(2.17) 
is discussed for completely general vorticity profiles. This discussion reveals the 
influence, upon disturbances, of the crosa-stream distribution of vorticity and of 
mymmetric profiles. An exact numerical solution of (2.15), (2.17) and (2.18) for uni- 
form potential vorticity distributions is then presented in $6, and compared with 
laboratory observations in § 6. 

3. Flow with zero potential vorticity 
Solution of the eigenvalue problem 

When the potential vorticity vanishes, H --t 00 and U, - 1 = 0. The longitudinal 
momentum, continuity and potential-vorticity relations (2.15), (2.17) and (2.18) 
become 

(u-c)a+i  = 0, (3.1) 

Za-i-(vh)+(;ii-c)A d A- = 0 ,  
dY 

where E ,  U are given by (2.14). 

problem for the complex phase velocity c: 
Elimination of f f  and 8 from the continuity equation (3.2) yields an eigenvalue 

Because E( f L) = 0, this equation has singularities at the edges of the current, and 
we wish to find the solution for which the eigenfunction $2 is regular at y = f L.t From 
(3.3) we see that da(L)/dy must be finite in order that 8 be finite on the free streamlines. 
Therefore, when (3.4) is integrated across the current, we require 

L 

-L 
1 [ X - ( U - c ) ” a d y  = 0, ( 3 4  

where L = 42. 

vanishing depth remain a streamline. 
t This condition may also be derived more formally by the requirement that the location of 
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In order to solve (3.4), ( 3 4 ,  with a finite wavenumber B, c and 42 may be expanded 
in the power series 

(3.6) I c = C 0 + € C l + € 2 C 2 +  ..., 
Q(Y) = UO(Y) + %(Y) +€%2(Y) + - - * 3 

where the amplitude is normalized by requiring 

B(0) = 1. (3-7) 

Substitution of the expansions (3.6) into (3.4), and requiring that duo/dy be finite 
at y = k L, where X = 0, shows that 

Hence the leading-order downstream velocity perturbation is independent of y . 
From (3.7) we set uo = 1 and require that ul(0) = ~ ~ ( 0 )  = ... = 0. The eigenvalue co 
is given by ( 3 4 ,  in which the leading-order terms imply 

L 

-L 
uoj [X- (U-co)2]dy = 0.  

This is a quadratic equation for co which, with 5 and U given by (2.14) and L = 42,  
can only be satisfied by 

Thus normal modes are stable in the limit 8 +- 0,  and are advected downstream at 
speed U .  

The terms of order B obtained from (3.4) imply that dul/dy = 0, and, in order to 
satisfy (3.7), this requires u1 = 0. Equating the terms of order €2 obtained from (3.4) 
yields an equation for the eigenfuwtion u2: 

co = u. (3.9) 

where 
(3.10) 

is the current velocity relative to its mean velocity U. By again applying the condi- 
tions that du,/dy be finite at X = 0 and u2(0) = 0, we find the ageostrophic perturbation 
u2 = #y2. The condition (3.5) gives 

u2(X - as) d y  = 0,  
J r L  

2Lcf - 

which yields the pure imaginary eigenvalues 

c1 = 2i/ Jis. (3.11) 

The positive root describes exponentially growing modes that are advected down- 
stream at speed U .  Disturbances with large but finite wavelengths are therefore un- 
stable, even though the Rttyleigh condition is not satisfied. 

When the calculation is continued to higher orders in 8 a pattern emerges, with 
even-numbered eigenvalues being zero (apart from co) and the rest imaginary. How- 
ever, the power-series expansion reveals that the growth ~ l c l  reaches a maximum a t  
a wavenumber only slightly less than unity, where the series converges slowly. In 

12-2 
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FIQURE 2. Growth rate of normal modes with wavenumber E on a current with zero potential 
vorticity: - , exact numerical results; - - -, firet-order growth rate escl given by the wave- 
number expansion; - - - - -, Pad6 approximation baaed on terms up to O ( P )  in the expansion. 

order to investigate disturbances with B - 1, it was necessary to solve (3.1)-(3.3) 
numerically, using the Taylor system (Norman 1972). The solution was obtained by 
integrating from y = L - y,  where y = 10-4, with initial conditions obtained from an 
expansion of (3.1)-(3.3) near% = 0. The solution at y = 0 was found. The equation was 
then solved again, beginning at y = - L + y  and integrating to y = 0. The solutions 
for Q were matched at y = 0 by scaling the solution from y = L - y ;  c was then adjusted 
iteratively to match $2, (to an accuracy of 104). Only imaginary eigenvalues c were 
found and, at E 4 1 , these are identical with those calculated using the expansion (3.6). 

On figure 2 the computed dimensionless growth rate ~ J c l  is plotted &B a function of 
the wavenumber (solid line). This numerical result is almost identical to the curve 
(dashed line) that is obtained from the power-series expansion (3.6), which is here 
extrapolated to E > 1 by taking the Pad6 approximation based on the first six non- 
zero terms. The growth rate achieves its maximum value at e = 0.80, which corres- 
ponds to a wavelength that is 7.9 times the Rossby radius. Wavenumbers greater than 
E = 1.1 yield only real eigenvalues and so are stable. 

The eigenfunctions 
Substitution of the individual functions uo, u,, ug, . . . into the longitudinal momentum 
equation (3.1) and the vorticity equation (3.3) yields the depth and cross-stream 
velocity perturbations respectively, for successive orders in E. Since the amplitude 
of each perturbation quantity (u’, w’, h’) has the downstream dependence e&(neglecting 
the uniform advection velocity V ) ,  we write (4, 4, 4, . . .) = (uo, ul, U g ,  . . .) e”, and 
similarly for w’ and h’. Then the real parts of the eigenfunctions of lower order in 6 are 

U; = COSX, W; = ysinx, hb = -YCOSX, (3.12) 

I - 4  - 2  
w1.= - cosx, - - sinx. 

1116 ” - 415 
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FIGURE 3. The structure of the zeroth-order eigenfunctions: (a) the first-order eigenfunctions; 
(b) (from (3.16)) and the combination of these two modes; (0)  for e of order one and a flow with 
zero potential vorticity. The undisturbed flow 6 is linear with y. 

The nature of the zeroth-order eigenfunctions is sketched in figure 3(a). Because 
both the cross-stream velocity o’ and the undisturbed longitudinal flow 4 are anti- 
symmetric in y, the zeroth-order perturbation corresponds to a meandering of the 
stream. The corresponding depth perturbation is linear with y ,  so that the total depth 
profile A + y remains symmetric and parabolic about the local midpoint of the current. 

The first-order cross-stream velocity vi is independent of position across the stream, 
but, because 4 = y, it corresponds to variations in the current width, as sketched in 
figure 3 (b). This perturbation hrts an amplitude whose phase is in radians ahead of ob. 
The depth perturbation is also independent of y, and therefore tends to maintain 
the symmetry about the midpoint y = 0. As a result of the form of G, the depth 
increases uniformly at the widest section of the current and decreases at the narrowest 
section. 

Higher-order eigenfunctions (such as vi and ok) have structures similtlr to those 
already described, but tend to concentrate the amplitude of perturbations nearer the 
two free streamlines. When the perturbations sketched in figures 3(a, b) are super- 
imposed, noting the comparable amplitudes in (3.12) and assuming E - 1, the structure 
of the flow becomes that sketched in figure 3 (c). There is still a uniform reduction of 
the current depth at z = in and a uniform increase at x = #n. When such a disturbance 
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FIQURE 4. Equispaced contours of the total depth L+h' from the numerical solution for zero 
potential vorticity, for 6 = 0.8 and a depth perturbation of maximum amplitude 0.28 (chosen 
for clarity). Regions of negative R + h' are hatched. 

reaches sufficiently large amplitudes it is likely that regions of closed circulation will 
develop within the deeper, broader parts of the stream, and such regions will be centred 
about the midpoint of the flow. Figure 4 shows a plot of the contours of constant h 
(the total depth of the current) for the numerical solution at E = 0.8. The meandering 
and variations of width are visible, along with a phase difference of $n radians between 
the two edges of the flow. The widest sections of the current are also deepest, even 
deeper than the mid-point of the undisturbed flow. 

Energetics 
The source of energy for the growing disturbances may be determined from the 
structure of the depth and velocity perturbations. In order to calculate the energy 
changes we consider small perturbations (u', v', h') to (2.8), (2.9), (2.3), where we revert 
here to a general mean flow. Taking Eu' times (2.8), Zv' times (2.9), h' times (2.3), and 
adding yields the local energy equation 

aE - - + hUy(U'V') + {Z(h'v')}, = 0, (3.13) 
at 

where the angle brackets denote an average in the x-direction and 

E = &(E(u'~ + E ~ V '  ') + ht2) (3.14) 

is a convenient measure of the energy of the perturbations (kinetic plus potential). 
As is well-known, interpretation of the local terms in (3.13) as kinetic and potential 
energy transfers is dangerous. To avoid this, we integrate (3.13) to give 

(3.16) 
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which shows that, growing perturbations draw energy from the kinetic energy of the 
mean flow. However, at the end of $ 4  we shall show that potential energy is also 
released. 

For the caae of zero potential vorticity the Reynolds stress term (u'v') is evaluated 
from (3.12) as 

(3.16) 

so that, a hi,, is positive in (3.16), the perturbations induce a positive Reynolds stress 
which transports momentum across the stream. The superposition of meandering and 
varicose modes with a phase Werence of &r therefore removes kinetic energy from 
the mean flow. In general, though, it is not yet obvious that the right-hand side of 
(3.15) need be positive (and the flow unstable) for an arbitrary mean velocity profile. 
This is the subject of $ 4, where it is shown that indeed there must always be unstable 
perturbations to any mean flow with two free streamlines. 

4. The case of arbitrary mean profile 
Formulation of the problem 

We again consider a current such as that discussed in $2. This time, however, no 
restrictions are placed on the depth profile save that = 0 at y = f L. The perturba- 
tion equations (2.15)-(2.17) are to be satisfied, while G and 8 are connected by the 
geostrophic constraint (2.11), and we shall show that an unstable mode exists for 
general depth profiles 8. 

For convenience, an integrated depth perturbation #(y) can be defined as 

J --L 

€ # , + 8 # 0 +  ..., 
(4.1) 

( 4 . 1 ~ )  

where the wavenumber expansion (4.1 a) also holds for c, Q and 8, and 

h, = #,,,, (n = 0,1,2, ...). (4.2) 

#n( - L )  = 0, (4.3) 

The 9, must satisfy some boundary conditions and, from (4. l), we have 

where we may choose the magnitude of #,,( - L) arbitrarily. Selecting for convenience 
the value #,,( - L) = -a( - L), we have 

1 #&L) = -G(-L) ,  

$,,,( - L )  = 0 (n > 0) .  
(4.4) 

In addition, application of the continuity equation (2.17) at y = i- L gives, since 8 is 
well behaved, 

EiO+(E- -C)##  = 0 (y= &L) .  (4.5) 

In general the #,, will have a boundary-layer structure of thickness 8 at critical 
layers. (where .ii = 0), and an inner expansion, followed by asymptotic matching 
across these layers, is necessary. The details of the inner expansion are not shown 
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explicitly here, but are recorded in appendix By which has been lodged with the 
editorial ofice of the Journal of Fluid Mechanics, and will be used in what follows. 
An alternative proof of the existence of an unstable mode, avoiding many of the 
boundary-layer problems, is given in appendix A. However, that approach assumes 
the existence of well-behaved eigenfunctions, while the expansion technique outlined 
in this section explicitly h d s  such well-behaved eigenfunctions. 

The expansions of (2.15)-(2.17) may be written symbolically as 

(G-c , )  ZC, + (1 -5) iv, + $ny + A ,  = 0, 

un + Bn = - + n y v  

524, - (hv,), + (G- c,) dnv + c, = 0, 

(4.6) 

(4.7) 

(4.8) 

for n = 0 , l  , 2, . . . , where A,, B, and C, involve combinations of terms from previous 
values of n with eigenvalues up to c,. Thus 

Substitution of (4.9) into (4.8), integration from - L to y, and multiplication by 
(1 - ?i,)/z gives, remembering that 8( - L)  = 0, 

- B,(G- c0) +A,. (4.10) 

Equations (4.9) and (4.10), with boundary conditions given by (4.4) and the expan- 
sion of ( 4 4 ,  form an eigenvalue problem for each c,. One particular solution, which 
couples the two free streamlines together, was isolated in $ 3  for the special case of 
zero potential vorticity, and we now examine the corresponding solution for the 
general case. We show that, except under very special conditions, the mode is always 
unstable. 

Solution up to order 8 
To leading order, A, = B, = C, = 0, and, from (4. lo), and (4.9), #o and vo satisfy 

* (5 - Go) 9ovv -do, 
1 -a, zvo = 

(4.11) 

(4.12) 

The set (4.11), (4.4) and (4.5) pose an eigenvalue problem for c, which may have many 
solutions; no indication has been found of whether or not c, can be complex. However, 
we choose here to examine a specific solution to (4.11) in which c,  is real, and show 
that to next order c is complex. We choose the solution 

(4.13) 

so that, to leading order, the disturbance is simply propagated downstream at speed 
U. We see that, in general, uo and h, are real, while vo is imaginary, implying that u' 
and h' have phases which are Blr ahead of v'. 

- 
CO = U, 4, = E ,  iv, = U ,  U, = G,, h, = U - 5  = -%, 
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The O(s) terms have A, = -cluo, B, = 0 (i.e. the along-stream flow remains geo- 

C9lUY - zu 91, + c1 = 0, (4.14) 

and (4.4) gives the conditions q51 = &, = 0 a t  y = -L ,  while the condition (4.5) 
gives no information to this order. Now (4.14) has two independent solutions, one 
with q51u proportional to E ,  and one with 

$hlU = - c l i i p .  U (4.15) 

Consideration of (2.1 1) shows that ii must vanish at least once in the interval ( - L, L) .  
The places where ii vanishes are the critical layers for this solution. We shall treat 
the case of one such layer (at y = yc), but the extension to several layers is immediate. 
We shall also assume that iiUc (we denote values at the critical layer with a suffix c) 
is non-zero. (In the extreme case of 4 vanishing quadratically, rather than linearly, 
at  a critical layer, it can be shown that the solution is stable. Physically, there is 
stability if the vorticity ;iiy vanishes when ii vanishes.) 

The solution (4.15) is well-behaved as ii approaches zero only if Zuuc is zero (as 
would be the cme for all symmetric depth distributions, for example); otherwise the 
solution contains logarithmically growing terms. In  either case, a matching across 
the critical layer is necessary. We therefore write 

strophic), and C, = -clQlou. Then (4.10) becomes 

(4.16) 

q5: =P-aE-c, (4.17) 

where a,p are unknown constants, and the boundary conditions on (4.14) have been 
used to give (4.16). To match across the critical layer, we shall need the behaviour of 
q5t near y = yc. Writing q = y - yc, we have 

where 6 > 0 is a small positive number. The expression log ( - S) is to be interpreted 
as log 6 _+ in, and from the inner expansion it is found that this must be 

log s-ilrsgn (iiuc). 

At  O(e2) in (4.6)-(4.8), A = -clul-c2uo, B, = ii2 and C2 = -cl~lu-c2q50u. Hence 
the flow becomes ageostrophic at this order. Then from (4.10) 92 satisfies 

cl(l-zu)#l = 0, (4.20) x .ii92uu - zuq52u + ?f" x m y  + $4 - cl& + c2 + 
-L 

together with 92 = 92, = 0, y = - L. 
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The condition (4.5) at y = + L yields the same result as requiring $z to be well- 

c,$,(L) = -1” %fi”y. 
-L 

(4.21) 

The results of the asymptotic matching are straightforward, with $,, $lY being con- 
tinuous at y = yc, the vzlogy behaviour being handled by the inner expansion, and 
the well-behaved part of $lYY being continuous at y = yc. We now match the O(q2) 
termsin theexpansions (4.18), (4.19) for q5, to find the coefficient aintroducedin (4.17): 
for 6+ 0 

(4.22) 

The term in brackets is well known to be the Hadamard ‘finite part’ of the (divergent) 
integral of tF2, and is a well-defined negative quantity. Its value is that of a naive 
integration of f i -2  from - L to + L, cavalierly ignoring the singularity at  yc, and 
simply substituting the end values + L into the integration. 

Having an expression for the constant a, we can now evaluate q5,(L) and then make 
use of (4.21) to find the eigenvalue cl. First note that $1 is continuous at yc, SO that 

Using the geostrophic relation (2.1 l),  integrating (4.23) by parts, and substituting 
for a from (4.22) gives, for small 6, 

(4.25) 

where we use the notation Fp  to denote the finite part of the integral. Then (4.21) 
gives, finally, 

(4.26) 

(For several critical layers, the last term in the denominator becomes a sum over all 
critical layers.)t 

If ?iYYC, the gradient of relative vorticity at the critical layer, does not vanish, then 
(4.26) gives c! as complex, and so there exists a mode with 9 ( c , )  > 0, and there is 
instability. If TiYvc does vanish, it is easy to see that the finite part of the integral is 

7 The formula (4.26) has been confirmed by numerical integration of (2.16)-(2.17) for specific 
asymmetric profiles. 
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negative.? Hence c1 is only imaginary and the positive root of (4.26) gives an un- 
stable mode. We have therefore proved the existence of an unstable wave mode for 
all distributions of depth, except in the unusual case when GUc vanishes at  a critical 
layer. The above analysis even holds in the zero-potential-vorticity caae (§  3) despite 
the fact that 1-2, in (4.12) then vanishes identically. The expression (4.26) reduces 
to ci = -A in that case, in agreement with the analysis in 8 3. 

Energy tramfers 
The energetics of currents with arbitrary velocity profiles are easily evaluated. We 
have (outside the critical layer, which has a negligible extra contribution) the Reynolds 
stress 

(u'v') = &quov;) + ~€W(UOVl* +u,v;) + O(f), (4.27) 

where the aaterisk denotes complex conjugate. Using (4.13), the zeroth-order terms 
cancel. The first-order perturbation eigenfunction can be found from (4.18) and gives, 
after simplification, 

W(uov,*) = ;iiyW(M,+ i$lU), (4.28a) 

W(U,V,*) = a( - iEu $1, + MI) ,  

(u'v') = - +€Cli( 1 + EU) + O(€2), 
whence 

where cli is the imaginary part of cl. Then (3.15) yields 

E dy = +mli /" Eau( 1 - 2,) dy + O ( 8 )  
dt -L  

(4.28 b )  

(4.29) 

(4.30) 

and, after use of (2.11), 

Hence the perturbation energy is indeed growing with time (as it must for exponentially 
growing modes). 

Finally, we note that the perturbation maas (i.e. heat) transfer scross-stream is 
given by 

(v'h') = &CliG. (4.31) 

In  the problem of $ 3  (and also in $5), the sign of (4.31) is such that the mass flux is 
directed outwards from y = 0.  The further significance of (v'h') appears when we form 
an expression from the continuity equation (2.3) for the rate of change of mean poten- 
tial energy g(h)2, where again h = E + h' : 

(4.32) 
~ ~ ( h ) a + E ( ~ ' h ' ) y  a = 0.  

t This is best seen by considering the sign of $1, in (4.16), (4.17). If Q vanishes only once, for 
simplicity, .ii is negative for y < yc and positive for y > yc. Hence (4.16) and (4.22) show that 
$l,,c;l is positive for y < yo and for y > yo, so that $,(L) is & positive multiple of c1 in this case. 
Then (4.21) implies that o1 is purely imaginary. 
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= - + e c l i r  @dy < 0.  (4.33) 
-L 

In  other words, release of mean potential energy is also necessary during the growth 
of the unstable mode discussed here. However, after a little algebra it may also be 
shown that the total potential energy, given by the integral of (&(h)a+#(h'2)), is 
invariant. Conservation of total energy (kinetic plus potential) thus implies that total 
kinetic energy is also invariant. 

5. An example: currents with uniform potential vorticity 
The results in $ 4  can be applied to any particular distribution of vorticity. They 

show that (almost) all currents of the form sketched in figure 1 are unstable to a wave 
mode whose growth relies upon a coupling of the two free streamlines, and the general 
analysis gives useful physical understanding,of the flow. However, the expansion 
about small wavenumber is not suitable for describing the most rapidly growing mode, 
which is that likely to be observed in laboratory experiments. We therefore present 
exact numerical solutions of the eigenvalue problem (2.15)-(2.17) for one partioular 
cwe: that of ourrents with a finite and uniform potential vorticity 2-l, for which 
the undisturbed flow is given by (2.13). The current is now also assumed to be flowing 
over a horizontal plane, so that the advection velocity U is zero. 

For both the numerical solutions and comparison of these with experimental results 
it is much more convenient, when there is a uniform potential vorticity, to modify 
the original non-dimensionalization (2.7). By using the 'potential vorticity depth' Ho, 
rather than the maximum current depth H ,  as a depth scale, one of the two length 
scales L and 2 can be eliminated from (2.13). Thus we define a new dimensionless 
wavenumber k and a current width Lo by 

and similarly rescale current depth and velocities using Ho instead of H in (2.7). The 
potential vorticity 8-1 can be expressed in terms of the current width L by using the 
definition x(0) = 1 in (2.13), whence 

1 
cosh Lo' 

*-I= 

If Lo + 0, we approach the limit of zero potential vorticity 2-1 = 0, while a very 
wide current, Lo + 00, implies that 2 - 1  + 1. In  these new variables the undisturbed ' 
flow becomes 

- coshy I ainhy 
h =  1-- u=- 

cosh Lo ' cosh Lo' (5.3) 

The momentum and continuity equations (2.8), (2.9) and (2.3), as well as the pertur- 
bation equations (2.15)-(2.17), are all unchanged except that e is replaced by k. 
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FIGURE 6. The computed wavenumber k,(a) and growth rate k,lol(b) for the most rapidly 
growing mode on a current with uniform potential vortioity, as functions of the current width 
Lo = fW/(g'H,)*. In (a) the wavenumber E,, which is non-dimensionalized by the Rossby 
radius based on the maximum depth H ,  is also plotted (broken line). 

Numerical solutions 
The perturbation equations (2.15)-(2.17), with k replacing e and with the undisturbed 
flow defined by (5.3), have been solved using a numerical approach similar to that 
described in 5 3. The solution was first computed for a range of values of the wave- 
number k and a number of values of the width Lo. As for the case of flow with zero 
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potential vorticity, the eigenvalues are all found to be pure imaginary. Hence the 
normal modes are unstable and are again advected downstream at speed U. 

For each value of Lo, the dimensionless growth rate klcl increases with increasing 
wavenumber a t  k Q 1, but reaches a maximum and decreases rapidly at sufficiently 
large wavenumbers. The wavenumber km at which the maximum growth rate is 
achieved was found by solving the equations at  successively intermediate values of 
k near the maximurn of the growth-rate curves. Resulting values of k m  are shown on 
figure 5(a). The most rapidly growing waves are relatively long (km < 1) when the 
current is ‘wide’ (Lo > l), and they are short (with km > 1) when the current is 
‘narrow ’. More quantitatively, k, satisfies the relation k m  N 1.1L;l approximately 
for Lo < 2, but decreases much more rapidly with increasing Lo when Lo > 2. On 
figure 5(a) we have also plotted em (broken line), which is the dimensionless wave- 
number (with maximum growth rate) based upon the length scale (g’H)if-l. The two 
wavenumbers are related through Lo by combining the definition k = eE“i with (5.2). 
(The two are significantly different at small values of Lo, where the current depth H 
differsmoreradically from the ‘potential-vorticity depth’ Ho.) AsLO+O,em approaches 
an upper limit of em 2: 0.8. This limit corresponds to flow with zero potential vorticity,? 
and the wavenumber is the same as that found in $ 3. At Lo % 1, on the other hand, 
H + H,, so that em and k m  become identical. The most rapidly growing mode then has 
a wavelength that is very much larger than the Rossby radius (g’H)if-l. 

On figure 6 (b) is plotted the growth rate kmlCl of the most rapidly growing mode as 
a function of the current width Lo. For small values of Lo this growth rate approaches 
the maximum growth rate previously computed for normal modes on a current with 
zero potential vorticity (see figure 2). However, the growth rate decreases exponen- 
tially when the current width is increased beyond Lo = 1. At Lo = 2 the growth rate 
kmlcl is an order of magnitude smaller than it is a t  Lo = 0.5, giving an e-folding time 
(kmlclf)-l of eight rotation periods. 

The rapid decrease of growth rate with increasing current width is predicted by the 
wavenumber expansion of $4.  For a current of the form (5.3), the general results (4.26) 
for the first-order eigenvalue reduces readily to 

Here, c1 is imaginary for all values of Lo, but its magnitude decreases exponentially 
at large Lo: c1 - & i(Q)iexp ( -  Lo) (Lo 1). It can also be shown that there are no 
other long-wave solutions for the cme of constant potential vorticity . 

The structure of growing disturbances 
Examples of computed depth and velocity perturbations for a current with uniform 
potential vorticity are shown in figure 6. In  this case the width wm Lo = 1 (giving 
a potential vorticity H-l= 0.35) and the amplitude 8 of the depth perturbation was 
set at 10-l. Figures 6 (a, b) show contours of the total depth h + h’ and depth pertur- 
bation h’, respectively, while figure 6 (c) shows contours of the cross-stream velocity 

t Note that use of the wavenumber-expansion technique discussed in $83 and 4 will not 
allow us to approach the limit of zero potential vorticity ( H  -+ 00) at any finite value of E ,  

since we would require k = 4 1 (but of coum this is no deterrent to a numerical solution). 
Thus we cannot simply let Lo -+ 0 (analytically) to recover the zero-potential-vorticity case. 
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FIGWBE 6 (a,b).  Legend on p. 362. 

perturbation v' for the same most-rapidly growing disturbance. As predicted by the 
wavenumber-expansion technique ( I s 3  and 4), the perturbation involves both a 
meandering and a longitudind variation of current width. There is a phase difference 
of tn radians between h' on the two free streamlines, and the greatest cross-stream 
excursions of the centre line occur at x-positions very close to where laL,,/axl is 
greatest. 

From figure 6 it can be seen that the depth perturbation and, similarly, the pertur- 
bation enprgy (as indicated by v ' )  are confined more closely to the edges of the current 
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FIGURE 6. Contours of (a) the total depth li+h’, (b) the depth perturbation h’, and (c) tht. cross- 
stream velocity perturbation v‘ for the most rapidly growing mode on a current with uniform 
potential vorticity and Lo = 1. The solution in (a) is for a depth perturbation of amplitude 0.1. 
Regions of negative values are hatched. 

Dyed 
fresh 
water 

I 
I NaCl solution 

40 cm 

- 45cm -1 
FIGURE 7.  A sketch of the laboratory apparatus in vertical section. The cross-hatching indicates 
the upper layer of fresh, dyed water inside the annulus and the deep lower layer is a NaCl 
solution. 

(even for Lo = 1) than was the case for perturbations on currents with zero potential 
vorticity. From the power-series solution presented in 0 4 the leading-order eigen- 
functions (4.13) reduce, for constant potential vorticity, to the simple forms 

sinh y h =-iv - -- 
- cosh Lo’ uo = - 

cosh Lo’ (5.5) 
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The hyperbolic functions at  this and higher orders tend to concentrate the perturba- 
tion energy into regions closer to the two free streamlines. This is where the basic flow 
has the greatest depth variation and a concentration of relative vorticity: 

- diZ/dy = - cash ylcosh Lo. 

The concentration of perturbations near the fronts is much stronger for wider currents, 
flows for which the vorticity ?Ey at the centre line is much smaller and for which we 
know that the disturbances grow much more slowly. 

Hence our restriction that the flow has a uniform potential vorticity results in a 
coupling between the two free streamlines that becomes very much weaker as Lo 
becomes larger. On the other hand, it must be remembered that currents with more- 
general vorticity distributions are able to be much wider than the Rossby radius based 
on the fluid depth H while still having a more uniform distribution of relative vorticity, 
thus making larger growth rates possible for wide currents. 

6. Laboratory experiments 
Apparatus 

Currents with an approximately uniform potential vorticity and which were bounded 
on each side by a well-defined density front were produced in a rotating container. 
In  order that the flow be initially uniform along the current, an axisymmetric con- 
figuration was used. The free surface of a relatively deep lower layer of dense fluid 
then served as a horizontal (geopotential) surface on which the current flowed. This 
also greatly reduced the influence of friction below that which would be induced by 
a solid boundary. The depth of the lower layer of sodium chloride solution was, in 
most experiments, either 28 cm or 40 cm. A large annulus with a relatively narrow 
gap between its walls was partially immersed in the lower layer, as sketched in figure 
7. The annulus was suspended from above and held concentric with the vertical axis 
of rotation of the container and stationary in the rotating frame of reference. Three 
different annuli were used. One had an inner radius of 19.8 cm and an outer radius 
of 23.8 cm, leaving a gap of half-width Wo = 2.0 cm. The others had mean radii of 
20.0 cm and 21.6 cm, with half-widths Wo = 3.9 cm and Wo = 3-5 cm, respectively. 
The outer wall of the rotating container was at a radius of 45 cm. 

After the salt solution had come to the desired rotation rate !2 = if, dyed fresh water 
was carefully floated onto the free surface inside the annulus to form the shallow upper 
layer of depth Ho shown in figure 7. The system was then left for at least 30 min to 
reach solid-body rotation everywhere. The depth Ho could be determined both by 
observing a vertical scale horizontally through the Perspex walls and by measuring 
the volume of upper layer fluid placed in the annulus. At a time t = 0 the annulus 
was carefully drawn vertically upwards and removed. The subsequent flow was made 
visible by the dye in the upper layer and small pellets of paper floating on the free 
surface. Photographs were taken with a camera mounted in the rotating reference 
frame and time exposures of about one-half of a rotation period were used to obtain 
streaks. Such streaks, as well as direct observations, revealed no motion before the 
annulus was withdrawn. Values of the Coriolis parameter f ranged from 0.38 s-l to 
2.5 s-l, while the reduced gravity g' lay in the range 0.2 < g' < 12 cm 8-2. The initial 
depth H ,  of the upper layer wm always between 4 and 6 cm. This gave a ratio of layer 
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(iii) (iv) 

F I G ~ L E  8. Streak photographs showing four stages in the evolution of a laboratory current 
with W, = 2.0 cm, f = 1.77 s-1 and 9, = 1-18 (4 s exposures). Times after withdrawal of the 
annulus are (in number of revolutions): (i) t = 2 ;  (ii) 4;  (iii) 6 ;  (iv) 8. The ratio of layer depths 
is 0.17. Concentric circles on the bottom of the tank have a 5 cm spacing. 

depths in the range 0.1-0-16 or in the range 0.16-0.2 when the lower layer was 40 cm 
deep or 28 cm deep, respectively. However, some experiments were also carried out 
with shallow lower layers in order to observe the influence upon the flow of the lower 
boundary. In  these cases the initial ratio of layer depths was between 0-8 and 0.9. 

Experimental observations 

When the annulus was removed, the buoyant upper-layer fluid first spread radially 
toward and away from the axis of rotation by a distance that was measured to be 
close to the Rossby radius (g’H,)+f-1. This collapse brought the flow into an approxi- 
mately geostrophic balance (described by (2.11)) within a time scale of orderf-l. An 
anticyclonic (clockwise) flow is produced in the outer half of the upper layer and a 
cyclonic flow in the inner half, while any motion in the deep lower layer can be neg- 
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lected. The axisymmetric geometry requires that both potential vorticity and angular 
momentum be conserved by the fluid in each layer during the collapse and that there 
is a balance between the buoyancy, Coriolis and centrifugal forces in the final state. 
The ratio of centrifugal and Coriolis accelerations is given by S/fr - (g’IZo)i/fR, 
where R is the radius of the annulus. For most experiments this parameter was less 
than lO-l, but it reached 0.2 for experiments with large Rossby radii. Therefore the 
geostrophic basic flow assumed in the analysis in previous sections is only approxi- 
mately realized. 

Even before the geostrophic collapse WM complete, rapidly growing billows 
(believed to be Kelvin-Helmholtz billows) with length scales of the order of 2 cm 
appeared on each edge of many of the currents. However, these disturbances also 
dissipated rapidly (often before the first photograph could be taken), presumably 
mixing some of the fluid near the fronts, and the current again became axisymmetric 
for a time. Later, but always within two or three revolution periods, disturbances 
with much larger downstream length scales appeared on the otherwise uniform flow. 
Subsequently, the current always broke up into a chain of eddies within five to ten 
revolutions. 

If we assume that the deep bottom layer is stationary and that there is no mixing 
between the layers during the collapsing phase, then the laboratory current is described 
by the two dimensionless parameters fWo/(g‘Ho)) and Wo/Ho. In  order to relate the 
parameters before and after the initial collapse, we write Wo = A/2H0, where A is the 
cross-sectional area of the current, and define 

By integrating the hyperbolic depth profile ( 6 4 ,  the area A can be found in terms of 
Lo = f W/(g’Ho)i (where W is the half-width after collapse). Then (6.1) gives 

PEPo = Lo - tanh Lo. (6.2) 

Then the final width Lo -+ 0 when .=!Yo + 0, while Lo N Po+ 1 whenPo 
In figure 8 are shown four stages during the evolution of a current that was formed 

whentheinitialRossbyradiuswasequalto thehalf-widthW,oftheannulus (Po = 1.18). 
In (i) the flow is largely axisymmetric and the relative vorticity is distributed through- 
out the width of the current. In (ii) the streaks reveal that regions of closed anti- 
cyclonic circulation have appeared near the centre line of the current. The fronts 
(edges of the dyed fluid) also reveal a wavelike structure. There appears to be some 
meandering away from the initial centre line as well as variations in current width. 
Both become more obvious in (iii), where the flow appears to be qualitatively very 
similar to that sketched in figure 4 (c) ,  except that at this large amplitude there are 
closed circulations within the deeper sections of the current. In this case there are 
nine or ten waves around the annulus. In (iv), individual eddies have broken off from 
their neighbours and the flow become a broad region of anticyclonic eddies. These 
subsequently decay very slowly due to friction. 

In  figure 9 is shown a similar sequence in the evolution of a current for which the 
initial Rossby radius was 1.56W0 (Pa = 0.74). Frame (i) again shows an almost &xi- 
symmetric flow. However, small ‘ cat’s-eye ’-shaped disturbances are already visible 
near the centre line ( y  = 0) .  Only one revolution later (ii) these disturbances influence 

1. 
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(iii) (iv) 

FIQIJRE 9. Streak photographs showing the evolution of a laboratory current with tV, = 2.0 cm, 
f = 1-11 8-1, and Po = 0.74 (4 s exposures). Times after withdrawal of the annulus are (in 
number of revolutions): (i) t = 3; (ii) 4; (iii) 6 ;  (iv) 8. The ratio of layer depths is 0-17. 

the whole flow. In  this case there are seven waves around the annulus and both the 
varicose and meandering nature of the flow is visible. In (iii) and (iv) the anticyclonic 
eddies again develop and break up the current. 

For contrast, figure 10 shows the evolution of a current that is much wider than 
the Rossby radius (3, = 4-0). As for the experiments shown in figures 8 and 9, the 
initial ratio of layer depths is 0.17. In this case disturbances could be seen first at the 
edges of the current (i) and rapidly grew in amplitude to take the form of waves that 
‘break’ on their upstream side (ii). The two fronts then appear to behave indepen- 
dently. Vortices of opposite sign develop in the lower layer behind each ‘breaking’ 
crest (iii) and can lead to the formation of vortex pairs at each edge of the flow. The 
resulting turbulent current is shown in (iv). When the ratio of layer depths was less 
than 0.2 this apparently two-layer flow occurred for all currents with$?, =- 2. 

For large depth ratios, the transition between the two kinds of behaviour occurs 
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(iii) (W 

FIGURE 10. Streak photographs showing the evolution of a laboratory current with W, = 3.9 cm, 
f = 2-87 8-1 and 9, = 4-0 (4 s exposures). Times in number of revolutions after withdrawal of 
the annulus are (i) t = 3; (ii) 4; (iii) 6; (iv) 12. The ratio of layer depths is 0.17. 

near 9, = 1. Figure 11 shows two stages in the evolution of a current with 3, = 1-07 
and a ratio of layer depths 0.84. The disturbances still appear to be dominated by a 
coupling between the two density fronts. The waves do not ‘break’ and no cyclonic 
eddies develop in the lower layer. On the other hand, when 9, = 3.7 and the depth 
ratio is 0.9, each edge behaves independently. This case is shown in figure 12, where 
the initial axisymmetric current develops small-scale breaking waves on each edge. 

In  each experiment the number n of waves that appeared around the annular 
current were counted.? This wavenumber increased linearly with 9, for each annulus. 
The wavelength was then calculated from A = 27rR/n, where R is usually the mean 
radius of the annulus used. For ‘wider’ currents (9, > 2)’ though, there wm a smaller 
number of waves on the inner edge of the current than on the outer edge. However, 

Kelvin-Helmholtz billows if the two length scales were distinctly separated. 
t Measurements of wavelength were always taken after the disappearance of any small-scale 
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(ii) 
FIGVRE 11. The evolution of a laboratory current with a shallow lower layer. Wo = 2.0 cm, 
f = 1-44 8-1, z0 = 1-07 and the ratio of layer depths is 0.84. Times in number of revolutions 
after withdrawal of the annulus are (i) t = 2; (ii) 4. 



Ageostrephic instability of ocean currents 369 

(iii) (iv) 

FIGURE 12. The evolution of a laboratory current with a shallow lower layer. FV0 = 3.9 cm, 
f = 1-77 s-1 ,9 ,  = 3-7 and the ratio of layer depths is 0.9. Times in number of revolutions after 
withdrawal of the annulus are (i) t = 1 ;  (ii) 3; (iii) 6;  (iv) 8. 

using the appropriate radius of each edge after the initial collapse yielded two very 
similar wavelengths. A more serious problem at large 2, was that the wavelengths 
increased with time, and this may be due to a similarity of the scales of Kelvin- 
Helmholtz and rotationally dominated disturbances. 

The dimensionless wavelengthfh/(g’H,)~ is plotted on figure 13, where the symbols 
indicate the annulus width and ratio of layer depths. Where the wavelength increased 
with time the two detectable extremes are plotted and connected by a vertical line. 
The computed wavelength 2n/k,  (from figure 5b)  is also plotted and the upper scale 
of the figure shows the current width Lo after collapse as given by (6.2). For9 ,  < 1 
(Lo < 2) the observed wavelength increases slowly with 2, in roughly the same way 
as does the computed wavelength, but is almost a factor of two smaller. At Z0 > 2 
the observed instability has a roughly constant length scale, while the computed 
wavelength for the one-layer instability then increases rapidly with current width. 
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FIGURE 13. The observed dimensionless wavelength (based on the Rossby radius bejcwe geo- 
strophic adjustment) m a function of the initial width of the current, so = j Wo/(gfHo)i. Data 
indicate the annulus used and the ratio of layer depths: 0, W, = 2-0 om and depth ratio 
5 0.2; 0, Wo = 3.6 or 3.9 cm and depth ratio 5 0.2; x , depth ratio 0.8-0.9. The upper scale 
is the width Lo ajhr geostrophic adjustment (calculated from 9, and (6.2)) and the computed 
wavelength 2n/k, is plotted on this scale. 

The growth rates of the observed disturbances are difficult to quantify because 
their appearance and growth at very small amplitude is poorly defined. However, 
their appearance within one to two revolutions after the annulus was withdrawn 
implies a growth rate lkcl - O(4 x This lower limit is consistent with the 
computed growth rate on figure 5 (b) for Po c 1. A more clearly defined time scale, 
and one that is of importance in oceanographic observations, is the period required 
for the axisymmetric flow to break up into isolated eddies whose circulations have 
pinched off from their neighbours. For those experiments with layer-depth ratios less 
than 0.2 this time scale was always close to 5 or 6 rotation periods, but it was as small 
as three revolutions (at 2P0 21 1) when the depth ratio was large. 

Discussion of the experimental results 

The data on figure 13 are presented again on figure 14, along with the computed wave- 
length 2nl.5, for the most rapidly growing mode described in § 5. However, this time 
the wavelengths are normalized by the Rossby radius based on the maximum depth 
H of the current after its collapse to geostrophic balance. This depth is calculated from 
(5.2) after finding the balanced width Lo from (6.2), and assumes that the initially 
uniform potential vorticity remained after the collapse. To well within the scatter 
of the data, the measured wavelength A is a constant multiple of the Rossby radius: 

For Po c 2 we have already described the qualitative appearance of the growing 
f h / ( g ' H ) i  = 7.4 f 1.2. 
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FIQURE 14. The data of figure 13 but with the wavelength renormalized using the calculated 
Roseby radius in the state of geoatrophic balance (assuming conservation of potential vorticity). 
The data have a mean offA/(g’H)f = 7.4+ 1.3 (broken line), whioh correaponds to the wave- 
number B = 0-86+0.16. The computed wavelength 2n/e, for the coupled mode on a current 
with uniform potential vorticity is also plotted (solid line). The dotted line shows the computed 
wavelength (against the upper scale) of the coupled mode with maximum growth rate for the 
profile (6.3), which haa a varying potential vorticity. The dashed line ia the computed wave- 
length of the mode attached to a single front for the same prome (6.3). 

disturbances, and, for a sdliciently deep lower layer, this appears to be identical to 
that predicted for the one-layer instability. The two edges of the current couple to- 
gether and give rise to both meandering and varicose structures which are in radians 
out of phase. The growing disturbances are stationary and large anticyclonic eddies 
develop from the wider and dckper sections of the wave. The computed and observed 
growth rates are also consistent with each other. On the other hand, no rapid change 
of growth rate with current width Lo could be detected, and the measured wave- 
lengths are smaller than those predicted. These discrepancies we attribute largely to 
the simultaneous instability of at least one other mode, a mode which becomes domi- 
nant only at  larger current widths (so > 2), and which appears to have alength scale 
close to 2n deformation radii and growth rates of order 10-8-10-1. This mode is 
discussed below. There are also a number of other factors that may possibly influence 
the observed wavelength at  go < 1. First, the formation of a ‘narrow’ current in our 
experiments requires that the upper layer have a large Rossby radius of deformation, 
which means that the collapse to geostrophic balance involves an extensive, rapid 
spreading of the buoyant fluid, leaving a rather shallow current. Both mixing by 
Kelvin-Helmholtz billows (which could be clearly seen in cine films) and friction may 
then affect the vorticity and current depth throughout the width of the undisturbed 
flow. Alteration of the potential vorticity profile can in itself lead to only small changes 
in the most unstable wavelength at  Lo < 1, as the behaviour must then approach the 
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same limit of zero potential vorticity. To illustrate this with a quantitative example 
we have chosen the convenient (but otherwise arbitrary) depth profile 

- ya coshy h =  I--- 
Li cosh Lo’ 

and computed the wavelength and growth rate of the most unstable mode that 
couples the two edges of the current. This wavelength is plotted on figure 14 (dotted 
line), while the dimensionless growth rate is somewhat greater than that found for the 
uniform potential vorticity profile (kc, = 0.21 at Lo = 1). 

Another result of the dissipation of vorticity during the collapsing phase is a small 
reduction of the current depth H .  This would imply that we have underestimated the 
value of the observed dimensionless wavelength fh / (g’H)t  on figure 14 (and similarly 
overestimated the predicted wavelength on figure 13). Other factors that we have 
neglected are non-zero perturbation velocities in the finite lower layer and interfacial 
friction, both of which may have a direct influence upon the energy balance in the 
growing disturbances. 

The two edges of the current are again strongly coupled when Po < 1, and the ratio 
of layer depths is close to one. However, the structure of disturbances is different from 
that at small depth ratios, with the current showing less tendency to meander, and 
the growth rate is noticeably greater. In this case, the lower layer cannot be considered 
stationary, since its depth changes significantly during the collapse to geostrophic 
equilibrium. Conservation of potential vorticity implies that the fluid velocity in this 
layer is in the opposite direction to that in the upper layer, and this must be expected 
to influence the form of the coupling between the two density fronts. 

At Po > 2, with all the depth ratios used, the collapse to geostrophy has little 
influence upon the fluid near the centre line. Under these conditions we observe a 
clear qualitative difference in the instability. Each front is observed to behave inde- 
pendently and develop waves, which have a length scale determined by the Rossby 
radius. Furthermore, the growth rate of the coupled, one-layer instability at Po > 2 
is predicted to be more than an order of magnitude smaller than at  2Y0 = l , t  while 
the length scale is predicted to increase exponentially with L?,,. Hence we conclude 
that another mode of instability is present for Po > 2. However, we are uncertain of 
the nature of this second mode. There are two possibilities: it  may be a mode in 
which the second layer and the lower boundary play an important role, or else it may 
be another unstable mode (other than the one discussed in this paper) that is described 
by the single-layer equations (2.15)-(2.17). 

The particular solution to the perturbation equations (2.15)-(2.17) that is discussed 
in $8 3,4 and 5 has the leading-order phase velocity co = U ,  and represents an unstable 
coupling of the two free streamlines. However, we find numerically that there can be 
other unstable solutions with larger wavenumbers than those for the coupled-front 
mode. Although these other modes are not yet fully understood, we do know that 
each is concentrated close to one of the free streamlines and, to be unstable, requires 
a non-zero gradient of potential vorticity. Since the laboratory currents do involve a 

t The expression (4.26) shows that a decrease of the growth rate should be oxpected for 
profile that becomes steadily flatter near the critical layer; the argument is not limited purely 
to constant-potential-vorticity profiles. 
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variation of potential vortidity near their edges (due to mixing and friction), the one- 
layer model might therefore be able to describe the observed mode of instability for 
wide currents as well as the coupled mode observed for narrow currents. For the 
particular profile (6.3), which was chosen as a relatively simple variation on the profile 
(5.3) and which has a varying potential vorticity, numerical solutions show that the 
wavelength of the new frontal mode with maximum growth rate is a constant multiple 
of the Rossby radius. This result is plotted on figure 14 (broken line), where the pre- 
dicted wavelength can be seen to be much smaller than those observed. However, it 
may be that the preferred length scale is determined by the width of the region of large 
shear at  the current edge. This in turn is determined, in the experiments, by the Rossby 
radius (g’Ho)i/f, and by mixing. Before useful conclusions can be drawn it will be 
necessary to investigate further profiles numerically, and to find a method by which 
the potential-vorticity profile of a laboratory current can be determined to a sufficient 
accuracy. At present we can only approximate this profile by assuming conservation 
of potential vorticity during the collapse to geostrophic balance. 

The observed mode of instability for wide currents may also require the presence 
of a lower layer of finite depth. On the basis of previous quasi-geostrophic theories, 
conditions at Lo > 1 are well-suited to the appearance of a two-layer baroclinic in- 
stability. Since La (after the initial collapse) is a Froude number of the flow, all the 
laboratory currents should be baroclinically unstable, and larger values of Lo will 
give rise to baroclinic waves with larger growth rates. In experiments similar to those 
reported in this article, Griffiths & Linden (1981) have investigated unstable waves 
on an isolated two-layer vortex that is bounded by a sharp density front. They found 
that each growing wave led to the formation of a cycloneanticyclone pair when the 
ratio of layer depths was greater than 10-l. This behaviour is similar to that seen in 
figures 10 and 12, where disturbances grow independently on each edge of the wide 
currents, the lower layer plays a visible role, and a number of vortex pairs appear. 
Griffiths & Linden also detected a variation of wavelength with the ratio of layer 
depths. While no such dependence has been established conclusively for the length 
scales in the experiments reported here, the depth ratio does appear to influence 
significantly the value of the current width Po at which the two-layer instability 
becomes dominant over the one-layer, coupled instability. This transition occurs at 
Po 2: 2 for depth ratios near 0.2, but at 9, N 1.2 for depth ratios near one. Griffiths & 
Linden also observed that when the layer depths are comparable, velocities within 
the cyclonic eddies, which extended throughout the depth of the lower layer, were 
comparable to those in the upper layer anticyclones. Hence the dynamical role of the 
second layer may well be important for the wide currents and at  the large depth ratios 
in the present experiments. 

7. Conclusions 
A single-layer model of a gravity current that is ‘bounded by two free streamlines 

on a uniformly sloping surface predicts that such a flow is unstable. The influence of 
vanishing layer depth and large inertial effects near the fronts are included. Normal 
modes are stable in the limit of infinitely large downstream length scales, but finite 
wavelengths are unstable. For currents that are symmetric about their midpoint, 
perturbations are simply advected with the mean velocity of the fluid. A combination 
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of meandering and 'varicose' modes with a phase difference of &n radians releases 
kinetic and potential energy from the basic current. When the flow has zero potential 
vorticity, the mode with maximum growth rate is predicted to have the wavelength 
7*9(g'H0)4f-', where H is the maximum depth of the current, and an e-folding time 
of (O.l4f)-lY or 0.57 rotation periods. Flows with finite (uniform) potential vorticity 
are characterized by the variable length scale Lo = fW/(g'Ho)) ,  where W is the half- 
width of the current and Ho is a depth scale that characterizes the potential vorticity. 
The most rapidly growing mode in this case has a wavelength that increases with Lo 
and a growth rate that decreases rapidly when Lo 1. Thus, in contrast to the well- 
known Rayleigh inflection theorem for quasi-geostrophic flows, we have demonstrated 
an instability that does not require an extremum (or even a gradient) of potential 
vorticity. It seems likely that the presence of significant inertial forces might similarly 
destabilize other geophysical flows. 

A second type of unstable solution to the single-layer equations has also been found, 
but has not been discussed here. In this second mode of instability, perturbations me 
linked to one edge of the current, and require a non-zero potential vorticity gradient 
if they are to grow. As this mode may also be of geophysical significance (perhaps even 
in the m e  of a single isolated density front), it will be described in another paper. 

Our laboratory experiments with a current at the free surface of a rather deep lower 
layer confirm that a current with two fronts (and nearly uniform potential vorticity) 
is unstable. The observed structure of growing disturbances, when the current width 
Lo < 3, corresponds closely to that predicted. The velocity perturbations firat form 
'cat's-eye' structures at the centre line of the current, and the two edges co-operate 
to form eventually a train of large anticyclonic eddies. The experiments also indicate 
that the single-layer instability due to the coupling of the two free streamlines is 
likely to continue to be important when the lower layer is relatively shallow, providing 
that Lo < 2. 

A different mode of instability appears to make the dominant contribution to the 
release of energy from the laboratory currents when Lo > 3. Each edge of the upper 
layer then behaves independently and the lower layer plays a visible role. However, 
because the observed non-dimensional wavelength is independent of the theoretical 
parameter (current width) over the full range of parameters used, an unambiguous 
comparison of the experimental observations with theoretical predictions remains 
somewhat unsatisfactory. 

The flow configuration that we have considered is somewhat similar to that of the 
Denmark Strait overflow, in which large, energetic oscillations are detected. Smith 
(1976) presents an intensive discussion of the data for this flow, and Gnds that the 
horizontal components of velocity are in quadrature, and there is a distinct cross- 
stream component of perturbation heat flux which has a uniform sign but varies in 
magnitude across the stream. The disturbances are attributed to a two-layer baro- 
clinic instability and compared with the predictions of a quasi-geostrophic model. 
However, the presence of velocity components in quadrature and a cross-stream phase 
lag in the cross-stream velocity of up to go", may also be consistent with instability 
due to a coupling of the two edges of the dense current. The only mitigating factor in 
this hypothesis is that the cross-stream heat flux in the one-layer model, by (4.30), 
varies aa 6, and therefore takes both signs across the stream. However, an asymmetric 
depth profile could well lead to a very small region of reverse 4 near one edge, so that 
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detection of this area might be difficult. Further knowledge of the mean vorticity 
distribution and the influence of bottom curvature is necessary if the two instabilities 
are to be compared. 
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Appendix A. A Rayleigh integral argument 
The following alternative derivation of the leading term in the growth rate may be 

found a helpful complement to the matching technique used in 8 4 and appendix B, 
in so far as the assumptions on the structure of the eigenfunctions are apparently less 
severe. 

From (2.15)-(2.17) and (4.1) it follows that, correot to O(e8), # satisfies 

where E = c -  U. This is similar to (4.11). Division by (a+ %J* and intqpt ion yields 

Equation (A 2) is to be solved subject to 

' #(-a = 0, 

and a condition at y = +L. To obtain this, note that integration of (2.17) gives 

c l r L A d y  = 1" dy(&E+&), 

Ady = - i e q  dyji(;ii-c)a, 

-L  
or, after user of (2.16), 

L 

-L 
and so 

E#(L) = -iqL dyE('ii-c)O, (A 6) 
-L  

which is equivalent to  (4.21). 
It is readily seen that, when e = 0, a solution to (A l), (A 3) and (A 6) is 

# = #,, 3 d, c = U (or E =  o), (A 7) 
where a is an arbitrary amplitude factor. We shall now obtain an integral expression 
for the next term in c, i.e. E. By integrating (A 2) for #, and using (A 7) for q5E-l in the 
integral, we obtain 

= O(@) +O(e8), (A 8) 
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where a is taken as q5,( - L) (c" + EY( - L))-1 for convenience. Substitution in condition 
(A 6) then gives 

to  leading order. Reversing the order of integration in (A 9) gives 

The term in c" inside the integral is n?gligible, and by rearrangement we obtain 

It is readily shown that the firat two terms inside the brackets combine to give a 
negligible term of order c". Thus 

The denominator in (A 12) can be written aa 

where 6 + 0, and yc  again represents (one of) the critical layer(s). For c" tending to 
zero, the right-hand side of (A 13) becomes 

r L  + O(v2)1 d f  

(A 14) 

Now aa S -f 0, integrals of f'(f - Z;l)-r tend to 26 --+ 0, plus correction terms of order 
c" which also are negligible. Hence 

taking log (-6) = logs-imsgn (Tiuc) as before. Hence the result (4.26) for 3 is re- 
covered. 

REFERENCES 

GRIFFITHS, R. W. 1980 In Report of 1980 Summer Program in. aeophy8ical Plu'luicl DymmicS, The 
wood8 Hole Oceanographic I c s t i t u t h  (ed. G .  Veronis & K. Mellor). wood8 Hole Tech. Rep. 
-01-80-53. 



Ageostrophic instability of ocean currents 377 

GRIFFITHS, R. W. & LINDEN, P. F. 1981 The stability of vortices in a rotating stratified fluid. 

MA”, C. R. 1969 Temperature and salinity characteristics of the Denmark Strait overflow. 

NORMAN, A. C. 1972 A system for the solution of initial and two-point boundary value problems. 

ORLANSKI, I. 1968 Instability of frontal waves. J. Atmos. Sci. 25, 178-200. 
PEDLOSKY, J. 1964 The stability of currents in the atmosphere and ocean. Part I. J. Atmos. 

SNITH, P. C. 1976 Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceumg. 6 ,  
36&371. 

WORTHINOTON, L. V. 1969 An attempt to measure the volume transport of Norwegian Sea over- 
flow water through the Denmark Strait. Deep-sea Res. 16, 421-432. 

J. Fluid Mech. 105, 283-316. 

Dwp-Sec~ RM. 16, 126-137. 

In  Proo. Ass. Comp. Mech. (26th Anaiv. Conf., Boston), pp. 826-834. 

S C ~ .  21, 201-219. 


